
Blending Liquids

Karthik Raveendran∗

Georgia Tech
Chris Wojtan†

IST Austria
Nils Thuerey‡

TU Munich
Greg Turk§

Georgia Tech

Figure 1: Our method can quickly generate an entire family of fluid simulations from a small set of inputs. Here, we generate a large set of
animations of liquid colliding with walls of varying shapes and locations.

Abstract

We present a method for smoothly blending between existing liquid
animations. We introduce a semi-automatic method for matching
two existing liquid animations, which we use to create new fluid
motion that plausibly interpolates the input. Our contributions in-
clude a new space-time non-rigid iterative closest point algorithm
that incorporates user guidance, a subsampling technique for effi-
cient registration of meshes with millions of vertices, and a fast sur-
face extraction algorithm that produces 3D triangle meshes from a
4D space-time surface. Our technique can be used to instantly cre-
ate hundreds of new simulations, or to interactively explore com-
plex parameter spaces. Our method is guaranteed to produce output
that does not deviate from the input animations, and it generalizes to
multiple dimensions. Because our method runs at interactive rates
after the initial precomputation step, it has potential applications in
games and training simulations.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: Fluid simulation, non-rigid registration, shape blend-
ing.

Links: DL PDF WEB VIDEO

1 Introduction

The ability to direct and fine-tune visual effects is one of the main
reasons for their popularity. This is especially true for effects that

∗e-mail: kraveendran@gatech.edu
†e-mail: wojtan@ist.ac.at
‡email: nils@thuerey.de
§e-mail: turk@cc.gatech.edu

are as difficult to control as fluids. Because modern fluid simulators
expose numerous important parameters to the artist, it involves a
certain degree of trial and error to produce a fluid animation with a
specific behavior.

A common approach in special effects production is to run simu-
lations in batches to explore the parameter space. Afterward, the
artist and supervisor can select the simulation that best matches the
desired goal. If none of the outputs is chosen, the parameter range
is narrowed down to run additional simulations. However, there
are several downsides to this approach: the new simulations can re-
sult in undesired behavior (like a distracting splash in the center of
attention), it may require an excessive number of iterations of ex-
pensive fluid simulations, and the data from early simulations are
wastefully discarded.

We propose to solve this problem by smoothly blending between
existing fluid animations. We first develop a semi-automatic
method for matching two existing liquid animations. Once we have
this matching, we are able to immediately create new fluid motion
that plausibly interpolates the input.

Our method allows us to instantly synthesize hundreds of new ani-
mations from a sparse set of input samples and can be used to inter-
actively explore the parameter space. Further, since our technique is
based on interpolation, it guarantees that the output will not deviate
significantly from the provided inputs. After the initial precomputa-
tion phase, new animations can be generated on the fly at interactive
rates. As a consequence, it has potential applications in games or
training simulators where it can be used in place of a real-time fluid
simulation.

The key contributions of our work are as follows:

• A new approach to interpolate between free surface fluid sim-
ulations with changing topologies.

• A 4D non-rigid iterative closest point algorithm that incorpo-
rates user guidance.

• A subsampling technique for efficient registration of meshes
with millions of vertices.

• A fast surface extraction algorithm that produces 3D triangle
meshes from a 4D space-time surface.

http://doi.acm.org/10.1145/2601097.26
http://portal.acm.org/ft_gateway.cfm?id=26&type=pdf
http://www.endingcredits.com/research/BlendingLiquids/index.html
http://www.endingcredits.com/research/BlendingLiquids/01%20Main.avi


2 Problem

We aim to interpolate between two or more existing liquid anima-
tions. A liquid animation consists of a set of closed manifold tri-
angle meshes, with each mesh representing the liquid surface at a
specified time. Each individual surface mesh may have an arbitrary
number of voids, connected components, and tunnels (representing
bubbles, droplets, and tumbling waves).

Naively matching two such mesh sequences together frame-by-
frame is problematic, because each pair of meshes may have signif-
icantly different topologies, and because the surfaces must be tem-
porally coherent as they evolve over time. The topology problems
can in principle be solved by blending implicit surfaces [Cohen-
Or et al. 1998] or more sophisticated mesh-based alignment tech-
niques [Bojsen-Hansen et al. 2012], but they cannot guarantee tem-
poral coherence without additional work.

For this reason, we opt not to match together individual anima-
tion frames, but propose to match all of the frames at once. We
do this by concatenating all of the triangle meshes together into a
3D hypersurface in 4D space-time (Section 4) and then performing
a high-dimensional non-rigid registration (Section 5). We wish to
deform one space-time surface to match another one while keeping
the resulting deformation smooth. This strategy amounts to min-
imizing both a “fitting” energy and a “smoothness” energy (Sec-
tion 6).

Once we have successfully aligned a few space-time surfaces, we
can interpolate between them to produce intermediate motion (Sec-
tion 7). Finally, we can rapidly extract individual frames from the
space-time surface to produce the output animations (Section 8).
Figure 2 illustrates the steps in our method, using 2D animations as
input so that we can visualize the entire space-time surface.

3 Related work

Although our algorithm theoretically applies to a broad class of
surfaces that deform strongly over time, our primary focuses is
on liquid animations. Fluid simulation has become an estab-
lished field of computer graphics research, after the seminal work
of Foster and Metaxas [1996] and the popularization of stable
advection routines [Stam 1999]. In addition to such Eulerian
approaches, the state-of-the-art is steadily advanced by purely
particle-based [Müller et al. 2003; Solenthaler and Pajarola 2009]
and hybrid approaches [Zhu and Bridson 2005].

As our method takes surface data as input, it is oblivious to the
particular algorithm employed for solving the Navier-Stokes equa-
tions. However, the choice of a surface tracker has implications
on what kind surface data is generated by the simulation. A popu-
lar class of surface tracking algorithms is based on level-sets [Os-
her and Fedkiw 2002], and particle level-sets [Enright et al. 2003].
Another class of methods uses an explicit surface representation
[Brochu et al. 2010; Wojtan et al. 2010; Misztal et al. 2012]. These
methods better preserve fine details, but they require additional
work to retain well-shaped elements and handle changes in topol-
ogy. For particle based methods a variety of surface reconstruction
approaches have been proposed, e.g., using anisotropic kernels [Yu
and Turk 2010]. While we use a surface tracker as described by
Wojtan et al. [2010], our method could be similarly applied to any
other surface tracker, as long as a triangle mesh is generated for
each frame of the animation.

Several previous works share our goal of modifying an existing
fluid simulation, using non-linear optimization [McNamara et al.
2004] or forces [Shi and Yu 2005; Thuerey et al. 2006] to achieve
this goal. Similarly, some researchers have used guide behaviors to

make liquid surfaces follow a predefined path or shape [Nielsen and
Bridson 2011; Raveendran et al. 2012; Pan et al. 2013]. However,
in contrast to previous work, our goal is to very efficiently gener-
ate in-betweens for a pre-computed batch of fluid simulations — a
work-flow that has not been targeted by any previous method.

There is a rich literature of work relating to the registration of sur-
faces and point clouds in both computer vision and computer graph-
ics. The iterated closest point method (ICP) was introduced by
Besl and McKay [1992] and numerous improvements have been
suggested over the years [Hähnel et al. 2003; Gelfand et al. 2003;
Rusinkiewicz and Levoy 2001; Brown and Rusinkiewicz 2007].
Our work is closely related to the non-rigid ICP algorithms [Am-
berg et al. 2007; Li et al. 2009]. This technique has been applied
to problems such as completion of dynamic shapes [Li et al. 2012]
where they reconstruct a temporally coherent and water-tight se-
quence of meshes from data captured by multi-view acquisition
systems. Non-rigid ICP has also been applied to the tracking
of shapes with changing topology such as liquid surfaces [Bojsen-
Hansen et al. 2012]. Unlike these methods which register a pair of
3D meshes, in this paper, we extend the non-rigid ICP algorithm
to register entire animations of liquids. This spacetime formulation
lets us handle a number of scenarios that would be difficult or im-
possible for frame-by-frame registration algorithms. For instance,
the water drop example requires retiming; otherwise a floating drop
and pool (two components) would be awkwardly forced to align
with splash geometry (one component).

During each iteration of the ICP algorithm, we deform the source
animation to move all vertices towards their current correspon-
dences. We perform this deformation using a variation of the em-
bedded deformation model first introduced by Sumner and col-
leagues in [Sumner et al. 2007] and extended by Li and colleagues
in [Li et al. 2009]. Our deformations are applied in 4D spacetime
and we do not impose any non-linear constraints on the columns of
the affine transformation matrix at each node. This leads to a sim-
ple weighted linear squares solve that can be solved using standard
methods.

Aside from registration with ICP, researchers have explored a va-
riety of other approaches for matching surfaces. Szeliski et al.
proposed to use splines [Szeliski 1996], while others used local
similarity transforms [Papazov and Burschka 2011], intrinsic fea-
tures [Gelfand et al. 2005], and high-order graph matching [Zeng
et al. 2010]. Numerous methods in computer graphics morph be-
tween surfaces of different topology using an implicit representa-
tion [Cohen-Or et al. 1998; Breen and Whitaker 2001; Turk and
O’Brien 1999]. These methods are convenient because they do not
require explicit correspondence generation or advanced meshing
techniques. On the other hand, they are unable to use correspon-
dences to align salient features. For this reason, we opt to use ICP
to handle the majority of the registration, but our approach could
be combined with methods such as those using implicit representa-
tions for registering additional small-scale features.

The idea of treating animation data as a surface or volume in a
higher dimensional space has been used by graphics researchers
for various purposes. For instance, Klein and colleagues applied
this notion to frames of a video sequence and created a render-
ing solid that could be used to render stylized videos [Klein et al.
2002]. Kwatra and Rossignac applied compression algorithms to
the bounding triangles of a space-time volume of 2D cel animation
data [Kwatra and Rossignac 2002]. Finally, Schmid and colleagues
construct a time aggregate object by connecting triangle meshes in
time and use this data structure to produce stylized blurring and
stroboscopic images [Schmid et al. 2010]. Similarly, our algorithm
creates a spacetime mesh per animation by linking up frames of a
liquid surface. However, we also need to consider changes in con-



Animation A

Animation B

Space-Time Surfaces

Surface Registration Blended Surface

Output Animation

Figure 2: Overview of our method, using 2D animations for illustrative purposes. The input animations show two drops falling into a pool.
The space-time meshes are 3D surface that are registered to one another. A blended space-time mesh is then created, and this is sliced to
produce final animation frames.

nectivity and topology between frames due to the evolving fluid sur-
face and we handle these with tetrahedra instead of bilinear patches.

4 Space-time surfaces

Our method takes two animations as input: a source A and a tar-
get B. Each animation is a sequence of triangulated meshes (cor-
responding to a fluid surface evolving over time) along with per-
vertex velocities at each frame. We convert each animation into a
space-time mesh, which is a higher dimensional object obtained by
linking up vertices of successive frames of the animation in time
(by using the velocity field). There are several reasons for choosing
this particular representation:

• We can treat each animation as a manifold with boundary and
hence as continuous data.

• The motion which results from deforming an animation will
be temporally coherent due to this continuity.

• Changes in topology such as merges or splits do not need spe-
cial treatment since the space-time surface remains a single
connected component.

• It is a sparse/compact representation compared to others that
use volumetric data.

4.1 Construction

To construct a space-time surface, we first represent each vertex v
at time t as (vx, vy, vz, t·e) ∈ R4 where e is the average length of
all edges in the first frame of the animation sequence. This ensures
that space and time dimensions are scaled uniformly. We then wish
to connect the individual meshes in time. Instead of using a generic
animation reconstruction algorithm [Tevs et al. 2012], we can take
advantage of the information embedded in our fluid simulations.
We advect each vertex vt

i using the velocity field ut
i for an interval

∆t to its predicted position ṽt
i . We then find the vertex vt+1

j on
frame t+1 that is closest to ṽt

i . If the geodesic distance between
the two is less than 2e, then we create a link between vt

i and vt+1
j .

This link will not exist when a vertex is deleted during a topology
change. For instance, two surfaces will collide and disappear where

they merge together; a vertex on one of these colliding surfaces will
have no corresponding vertex in the next frame.

With this time link information, we can compute normals by cre-
ating a vector that is orthogonal to the tangents in space and in
time; we now have an oriented surface corresponding to an anima-
tion. Note that this representation is not a fully tessellated mesh in
space-time, but instead is a graph where each vertex has a set of
neighbors in space and up to two neighbors in time. In other words,
this graph provides connectivity information as well as orientation
at each vertex by stacking frames next to each other in time and
loosely connecting them with links that are guided by the velocity
field. When required, we can construct a local approximation of
the space-time surface near each vertex on the fly as described in
Section 5.2.

5 Registering space-time surfaces

The registration of two fluid animations is a challenging problem
for a couple of reasons. Firstly, it is highly unlikely that the space-
time mesh corresponding to the source can be mapped onto that of
the target through a single rigid transformation. Secondly, due to
the non-linear nature of Navier Stokes equations, the surface can
stretch or compress to a large degree. As a result, even the assump-
tion of local rigidity is far too constraining. This also means that
using an intrinsic characteristic such as Gauss curvature to auto-
matically create correspondences between the two surfaces is not
as robust as it normally would be for aligning meshes with moder-
ate deformations.

To solve this problem, we use a non-rigid iterated closest point al-
gorithm (non-rigid ICP). The input to this algorithm consists of two
space-time surfaces A and B. The output is a set of correspondences
(one for each vertex of A) that lie on the surface B. The basic idea
behind is ICP is to deform the source mesh using a small num-
ber of deformation nodes such that its vertices end up at the points
nearest to them (correspondences) on the target. Then, new corre-
spondences are computed for this deformed mesh and the process
is repeated until convergence.

When applied to two space-time meshes, non-rigid ICP moves ver-
tices of the source mesh in both space and time to best match the
target. This enables us to align two animations that have seemingly
contradictory constraints such as in Figure 4. This example features



impact events that occur in a distinctly different order between the
two input animations. Our algorithm deforms the two animations
in space, and more importantly time, to create correspondences be-
tween the two impacts. This allows us to generate an animation
where both drops hit the surface simultaneously.

5.1 Local deformation model

In order to deform one animation into another, we use a collection
of local surface deformations. We uniformly sample the space-time
surface with deformation nodes that are placed at a subset of the
vertices. Each node has an affine transform attached to it (which
is split into a 4 × 4 matrix A and a 4 × 1 translation vector b)
and influences all vertices within a given radius (measured using
geodesic distance computed by a fast marching algorithm). Hence,
we have to solve for 20 unknowns per node such that the resulting
surface is as close to the target as possible. The position vk+1

i of a
vertex at iteration k + 1 is determined by the weighted sum of all
nodes nj that influence it:

vk+1
i =

∑
j

w
(
nj ,v

A
i

)(
Aj

(
vk
i − nj

)
+ nj + bj

)
(1)

where w is a weight computed based on the geodesic distance be-
tween nj and vA

i (i.e. the distance between the node and the vertex
on the undeformed mesh).

5.2 Finding correspondences

The ICP algorithm relies on finding good correspondences at the
beginning of each iteration. Given a vertex on the deformed version
of the source mesh, we set its corresponding vertex to the closest
point on the target whose normals point in the same direction. The
user can also prescribe a sparse set of correspondences as described
in Section 6.

Since we do not have an explicit global tessellation of the space-
time surface, we first find the closest vertex on the target (using a
kd-tree lookup) and then find the closest point by projecting onto
the tetrahedra that surround it. To accomplish this, we construct the
local surface near the vertex by creating triangular prisms for each
face incident at that vertex. We can build these prisms by looking up
the forward neighbor in time (t+ 1) for each vertex of a triangular
face at time t. Next, we split up each prism into three tetrahedra and
find the closest point on these tetrahedra with a compatible normal.

In our experience, using the closest point rather than the closest ver-
tex makes the registration more robust and is worth the additional
computational expense.

5.3 Handling thin sheets and droplets

Splashing liquids often exhibit thin sheets and flying droplets (see
Figure 3). These features tend to evolve very differently for even
minor perturbations. In many cases, there may not be an obvious
mapping between these features for two simulations. Further, if
a corresponding feature does not exist in the target, it might get
deformed incorrectly onto another region of the target mesh and
might lead to unrealistic behaviour in the interpolated output. As a
result, if the user does not explicitly provide a correspondence for a
thin sheet or a droplet, we do not attempt to automatically register
them onto the target.

To produce plausible interpolations, we preserve such features from
the source animation instead of deforming them into an incorrect
portion on the target. The easiest way to do this is to exclude from
the fitting energy functions all vertices that are a part of a thin sheet

or a droplet. Note that these vertices are still influenced by the
nearby deformation nodes, and the smoothness energy will ensure
that their behavior is consistent with the global deformation.

We perform a connected component search of the triangle mesh at
each frame. Any component with fewer than 150 vertices is con-
sidered to be a droplet and all of its vertices are excluded from the
solve. We preserve these drops without distorting them by finding
their centroids, moving these centroids through the displacement
field (computed using Equation 1) and finally reconstructing the
vertices.Next, we find vertices that are part of a thin sheet. For each
vertex, we query the kd-tree for the 50 nearest neighbors within a
radius equal to the minimum sheet thickness (typically the width of
a grid cell). If more than 10% of its nearby points have a normal
that is opposite to its own, we flag all vertices as belonging to a thin
sheet. Further, we grow out this region by two rings (i.e. all neigh-
bouring vertices as well as their neighbours) to remove any stray
vertices that might not have been identified.

6 User-guided registration

A drawback of the closest point search in Section 5.2 is that it may
not always find a corresponding point that we might want. This is
of particular concern because a set of poor initial correspondences
can easily cause non-rigid ICP to settle on a local minimum. For in-
stance, in Figure 4, the vertices on the top of the lower of the drops
will pick their corresponding points on the top of the pool instead
of those on the drop in B because of their proximity. To resolve
this ambiguity, the user can provide a sparse set of correspondences
between pairs of points on A and B (for instance, for the top and
bottom points of the drop). Note that correspondences are not re-
stricted to points that lie on the same frame (i.e. same time) in both
animations and are instead specified in space-time. As a result, we
can map events that occur at different points in time to each other
(such as the impacts of two droplets).

We specify user correspondences using a simple UI in Maya [Au-
todesk 2013]. For a demonstration of our interface, please view the
supplementary video. To create a correspondence, the user first se-
lects the type of correspondence and then selects two vertices (one
on the source and the other on the target). To simplify the task, we
allow three kinds of correspondences:

1. Point : The most basic form that maps one point in space-time
onto another.

2. Trajectory : This is used when one spatial feature needs to be
mapped onto another for a duration of time. For instance, if
one wants to specify that the tips of the splashes need to be
aligned, then a trajectory correspondence will ensure that the
alignment persists until the splash dies out. If the user does
not specify the length of the trajectory, the algorithm will try
to preserve this correspondence for the entire animation. Note
that we require only the starting points because we can use the
velocity field to trace the correspondence through time.

3. Space : This pins a vertex to a point in space, but allows it to
slide in time. It is useful if the two simulations have different
solid boundary conditions.

Using these three types of correspondences, the user can quickly
map salient features from one simulation onto the other. Further,
the user can specify whether the correspondence needs to be strictly
enforced (hard) or not (soft). In general, a hard correspondence will
significantly influence the output of the ICP algorithm, while a soft
correspondence may be ignored if the rest of the mesh disagrees
with that particular choice. On average, the user only needs to spec-
ify 10 to 20 correspondences in total for an animation consisting of



Figure 3: The 50 percent interpolation (middle) of two crown splash animations (left and right).

10 million space-time vertices.

We create deformation nodes at each vertex of the source animation
that is specified as a user correspondence. These correspondences
affect the registration in a couple of ways. First, they are used in an
initial diffusion step where the user correspondences are propagated
to other deformation nodes. We fix the translation vector b for all
user correspondences, and then run passes of diffusion using the
vector valued heat equation on the translation vectors. This helps to
provide a globally consistent initialization for the deformed mesh.
Secondly, user correspondences override the closest point search
for that vertex. Soft correspondences are only applied during the
diffusion step and the closest point search and do not influence other
deformation nodes directly. In contrast, hard correspondences serve
as equality constraints on one or more of the elements (x, y, z, t) of
the translation vector b for the deformation node during the solve.
This means that nearby vertices as well as deformation nodes are
affected by a hard correspondence.

We implement the constraints for the hard correspondences in the
following way:

1. Point: We completely specify all elements of the translation
vector for the node.

2. Trajectory: We trace each point through the velocity field and
create deformation nodes at uniform intervals along time (typ-
ically every 10 frames). The translation vectors of these defor-
mation nodes are fully specified. In other words, a trajectory
correspondence is a set of point correspondences for a single
vertex over time.

3. Space: We create deformation nodes at the specified spatial
location at uniform intervals along time and fix (x, y, z) of
the translation vector while allowing it to move along time.

During the solve, all specified elements are removed as free vari-
ables and their known values are substituted into the energy func-
tions and Jacobian.

6.1 Energy functions

One of the characteristics of our fluid animations is that they have a
large degree of local deformation, but are already globally aligned
(in that no rotation or translation is required to put them both in
the same coordinate frame). We have found that an energy term en-
forcing rigidity, which is used in many other ICP algorithms, causes
significantly worse registrations for the strongly deforming meshes
we are dealing with. As a consequence, we employ only fitting and
smoothness energies, which will be described in more detail below.

Fitting The fitting energy functions measure how close the cur-
rently deformed version of the source is to the target. For each point
vi on the source mesh that has a corresponding point ci on the tar-
get, we have a point-to-point energy that computes the Euclidean

distance separating them. Similarly, we also have a point-to-plane
energy that permits sliding along the plane of the corresponding
point and helps to smooth out the energy landscape.

Epoint =
∑
i

‖vk+1
i − ci‖

2

2 (2)

Eplane =
∑
i

|〈Ni, v
k+1
i −ci〉|

2
(3)

Smoothness The smoothness energy term ensures that affine
transforms of adjacent deformation nodes are similar to each other.
For each node, this energy measures the distance between its pre-
dicted position using the affine transform of its neighbor and its ac-
tual position based on its translation vector. The energy is defined
as follows:

Es =
∑
ni

∑
nj

w(ni,nj)‖Ai (nj − ni) + ni + bi − (nj + bj) ‖22 (4)

6.2 Subsampling

Each fitting energy function for a vertex adds 4 rows to the Jaco-
bian. Note that each deformation node has compact support, so, on
average each vertex in 4D spacetime is influenced by 27 nodes.
The space-time meshes for a 5 second animation clip typically con-
tain several million vertices, and as a result, if we used the entire
mesh for registration, we would end up with a Jacobian matrix that
has on the order of tens of millions of rows. Even with sparse matri-
ces, such large sizes place unreasonable requirements on memory
and add to the computational cost of the algorithm.

Instead, we subsample the mesh by randomly picking 10% of the
vertices for each iteration of the algorithm. We retain 20% of the
sampled vertices from the previous iteration by selecting those with
the highest error. This random subsampling scheme speeds up the
algorithm by close to an order of magnitude, reduces the memory
footprint, and works flawlessly in practice.

6.3 Solving the linear system

We define the total energy of the system as a weighted sum of the
energies defined above:

Etotal = γsEs + γpointEpoint + γplaneEplane (5)

where the weights γs, γpoint, and γplane are set to 250, 0.1, and 1 in
our implementation, respectively.

Since each term in Etotal is at most quadratic in our free variables
(the entries of the affine transformation matrix Ai and translation



Figure 4: Animations of two spheres of water that are dropped into a pool. The red and green surfaces are from the input animations. Notice
that in each, the spheres strike the surface at different times. The blue images show our blending result, which causes both spheres to strike
the pool at the same time.

vector bi) , we can view it as a weighted least squares problem. We
solve this using normal equations:

(
JTWJ + λI

)
∆x = −JTWE (6)

xk+1 = xk + ∆x (7)

where J is the Jacobian of the system, W is a diagonal weight
matrix, E is the column vector created from each squared term in
Etotal, λ is a damping factor (typically set to 1e-6) and x is a col-
umn vector created by concatenating all free variables from each
deformation node.

The left hand side of the system is a dense, symmetric positive def-
inite matrix. Note that regardless of the number of vertices in the
mesh, the size of the resulting linear system depends only on the
number of deformation nodes. For relatively small matrices, we
use a Cholesky decomposition followed by backsubstition to solve
the system. For large matrices (> 10, 000 rows), we employ a pre-
conditioned conjugate gradient solver. After solving the system,
we deform the source mesh using the new affine transforms and
then recompute correspondences. We repeat this for a number of
iterations (usually 10−20) or until the difference between the total
energy in successive iterations falls below a threshold. Our sys-
tem also allows for an incremental or iterative registration process
where the user can add new correspondences to fine-tune a previ-
ous registration. To incorporate the newly added correspondence,
we create a new deformation node on the source mesh at that posi-
tion in space-time. Next, we recompute the node and vertex weights
for all points near newly added correspondence. We then load the
previously computed values for all of the free variables and apply a
few passes of diffusion on the translation vectors to ensure that the
solution is smooth and resume the registration process.

7 Interpolation

Having registered the two animations, we now have a correspon-
dence on B for each vertex of A. Given an interpolation weight
α, we can produce an intermediate space-time mesh by linearly in-
terpolating between the positions of vertices of A and their corre-
sponding points on B. A given vertex vA

i in mesh A will have an
interpolated position vI

i = (1−α)vA
i +αvB

i . Note that the inter-
polated mesh has the same connectivity as the space-time mesh of
A because of the way the correspondences were created.

When blending between two animations, it is possible to set the
blend weightα to be outside the range of zero to one. Blend weights
outside this range correspond to extrapolations. We have found that
for modest numerical values (e.g. α = 1.25), such extrapolations
produce plausible animation results.

We can also use our blending approach to create novel animations
between three or more input animations. Assume that we have three

Algorithm 1 Registering liquid animations

Require: Two sequences of meshes with per-vertex velocities
A,B, user correspondences u

1: Ast, Bst ← Construct space-time meshes from A and B.
2: nodes← Create deformation nodes on Ast.
3: Precompute deformation node weights for each vertex of Ast.
4: Diffuse user correspondences u to nearby deformation nodes.
5: while k < maxIterations do
6: Adefo← Deform Ast by using nodes.
7: v ← Randomly subsample m vertices of Adefo.
8: c← Compute closest points on Bst for each v.
9: E ← Compute energy vector using correspondences c.

10: nodes← New affine transformations from minimizing E.
11: k ← k + 1
12: end while
13: Compute final registered mesh R from nodes.
14: return R

animations, A, B, and C, and that we have a correspondence be-
tween an animation A and B, and another correspondence between
A andC. Given barycentric blending weights α, β, we can produce
new vertex positions according to

vI
i = (1− α− β)vA

i + αvB
i + βvC

i . (8)

Using this technique, our example animations can span more than
just a single parameter family of animations. We can think of each
example animation as a sample in a multi-dimensional parameter
space. We can produce intermediate animations anywhere within
the convex hull of these parameter space samples by performing
barycentric blending between the three nearest surrounding sam-
ples.

8 Surface Extraction

After registering two space-time surfaces and forming a new sur-
face through interpolation, we need to extract per-frame triangle
meshes for rendering. Note that because our registration allows mo-
tion in both space and time, the vertices from a single frame (that
used to all lie in a common plane in time) will no longer have the
same time values. We cannot just use these vertices as our meshes
to render. We extract new triangle surfaces from an interpolated
space-time mesh by first constructing an explicit tetrahedralization
of the entire space-time mesh. The purpose of this tetrahedraliza-
tion is to “fill in” the regions between pairs of meshes that come
from the different discrete frame times. We connect each triangle
with its corresponding triangle in the next frame (using tetrahedra)
to create the full tetrahedralization. We then slice this tetrahedral
mesh with hyperplanes of constant time, and each such slice yields
a triangle mesh for a given frame time.

During registration between space-time meshes, we only use a



Algorithm 2 Interpolating liquid animations

Require: Mesh Ast, registration R, interpolation weight α, time t
1: Ainterpol ← (1− α)Ast + α ·R
2: triangles← Intersect Ainterpol with hyperplane at t.
3: return triangles

loose correspondence between adjacent frames in an animation,
through time links. For surface extraction, however, we need an
explicit tetrahedralization. We begin forming these tetrahedra by
using the time links to help us define triangular prisms. Each trian-
gle from one frame has three links to another triangle on the next
frame, and this defines a prism. We then split up each such prism
into three tetrahedra as shown in the Appendix (Figure 9, left). We
take care to ensure that adjacent triangular prisms have a consistent
tetrahedralization, otherwise the resulting surface could have holes
or overlaps. More specifically, it is important that the coinciding
quadrilateral faces of adjacent prisms make use of the same diag-
onal to divide the quad into two triangles. In the Appendix, we
prove that it is possible to guarantee these matching diagonals for a
manifold triangular mesh.

Because our surface tracker attempts to maintain the surface tri-
angulation between frames of the animation, almost every triangle
from one frame has a matching triangle in the next. In these cases,
the corresponding prisms are well defined. In the cases where our
tracker performs mesh clean-up operations such as edge splits, edge
collapses, or edge swaps, we can still create a small group of tetra-
hedra to fill between the time slices. During topology changes,
however, the mesh is locally re-built, and forming the tetrahedra
is problematic. In such cases, we have left holes in the tetrahedral
mesh, and this results in small holes in the extracted surfaces. We
currently fill these holes by introducing a new vertex at the centroid
of the hole vertices and constructing a triangle fan that radiates from
the centroid to all of the boundary edges.

After slicing the tetrahedral mesh by a hyperplane, the resulting
mesh contains many sliver triangles. These sliver triangles cause
noticeable shading discontinuities if they are retained. We perform
one step of Laplacian smoothing [Taubin 1995] to even out the tri-
angle shapes, and the resulting mesh looks considerably improved
during final rendering.

Our space-time surface registration routine is summarized in Algo-
rithm 1, and the interpolation and surface extraction are reviewed
in Algorithm 2.

9 Results

All of our examples were run on a workstation with an Intel Xenon
ES processor with six cores that runs at 3.2 GHz and has 72 Gbytes
of main memory. The fluid simulation code and our registration
code are written in C++, and they are both multithreaded. For our
matrix solves, we use the Intel MKL library and Eigen. Figure 6
gives simulation, registration, and mesh extraction times for each
of our examples. Note that the entire registration process requires
less time than the time it takes to run an individual fluid simula-
tion. Also, once the registration has been performed, new anima-
tion meshes can be produced for any blend weights in a fraction of
the time it takes to perform either the simulation or registration.

Accompanying this paper is a video that shows our animation re-
sults. We use a common color scheme in all of our examples (still
images and video). Red and green meshes indicate original ani-
mation sequences that were generated by running a standard fluid
simulation. Blue meshes indicate blended results that were created

using our method. During registration, we always deform the red
space-time mesh to match that of the green.

One of the strengths of our approach is that it can alter the timing of
events in an animation. An extreme example of this is demonstrated
in Figure 4, where two drops of water are released and strike a pool.
In one animation (red) the leftmost drop hits the water first, and
in another animation (green), the rightmost drop hits first. Using
our animation blending approach, we can create an entire family of
animations in which the two drops hit the water at various times.
For instance, the blue animation shows a variant in which the two
drops strike the water simultaneously. Note that this result would
not be possible if we deformed our animations purely in space and
not in time.

Our dam break example shows that we can interpolate between
more than two animations (Figure 8). In this set of animations, a
block of water is released at one side of a long pool, and this forms
a wave that sweeps the length of the pool. A wall blocks a portion
of the pool, so the water must sweep around this wall. We simulated
animations for each of four different positions and widths for this
wall, giving us a two-dimensional family of parameters (wall width,
wall position). These two distinct parameters allow us to create new
animations anywhere within this two dimensional parameter space.
In the figure, we show stills from nine different animations to show
the range of variations that this allows.

The crown splash example (see Figure 3) demonstrates how our
algorithm works on input that has droplets, thin sheets and numer-
ous topology changes. Despite the relative coarse sampling of the
mesh, the interpolated result captures the global behaviour of the
two crowns. However, the droplets in the interpolation depend on
the choice of the source animation.

We compared our interpolated results to actual simulations that
were run with appropriate parameter values. The two animations
are qualitatively similar, however there are certain differences as
can be seen in Figure 5. Please see the accompanying video for
more examples.

Figure 7 shows a fluid duck being thrown into a pool of water. The
original animations have the ducks thrown at few different angles,

Figure 5: A comparison of the simulated result (top, in cyan)
against our interpolated result (bottom, in blue) for the dambreak
scenario with the wall width set to 50 percent .



Number of Simulation Regist. Extract
Animation Correspond. Time Time Time
Two Drops 8 35.2 14.8 0.31
Dam Break 20 40.7 14.1 0.25
Duck 10 22.1 15.7 0.35
Crown Splash 20 67 22 1.9

Figure 6: This table gives the average number of correspondences
per example, simulation time, registration time, and the time it takes
to extract all meshes in the entire sequence. All sequences consist
of 150 frames except for the crown splash (75 frames). All times
are given in minutes, so we extract about 5 meshes per second for
input meshes with 50k vertices.

causing them to splash into the pool at different locations. We can
interpolate between any pair of input animations, allowing us to
span a continuous range of possible throwing angles. In addition,
we aimed two of the ducks at the wall, which adds a discontinuity
to the behavior of the animation. If we select one of our input an-
imations to capture this discontinuity, we can smoothly interpolate
across this event. Interpolating between the two ducks that hit the
wall allows us to produce duck strikes along a range of positions on
the wall. We can even use extreme blending weights (α = 1.25) to
produce new animations in which the duck hits the wall above the
highest example animation.

10 Discussion and Limitations

Currently, our method has several limitations that suggest possible
directions for future research. First, our technique is aimed at in-
terpolating between simulations that are qualitatively similar and
that do not have highly divergent behaviors. This means that we
might need additional simulation samples for parameters that pro-
duce highly discontinuous behavior. For instance, our method is
unlikely to produce plausible behavior near solid boundaries if none
of the samples involved the solid boundary. It would be useful if we
could automatically determine if two simulations are too far apart
by using the energy functions.

Second, we rely on the user to identify a few salient features in
each simulation. In our experience, these features coincide with
regions of high curvature in space or in time. One possibility is to
build up a statistical model of such features by learning from user
correspondences, and then automate the process. At the very least,

Figure 7: This composite image shows a duck being thrown into
a pool of water. This animation was produced by blending be-
tween two animations of ducks that were thrown at different angles.
Please watch the video to see the continuous variation of duck tra-
jectories that we can span using blending.

we could further reduce the effort required from the users by only
involving them in a simple verification step.

Another issue that we ran into was the memory consumption of the
algorithm. Even with subsampling and a relatively coarse sampling
of deformation nodes, registering two detailed animations requires
between 30 to 50 GB of RAM. At the same time, the subsampling
technique indicates that a multi-resolution approach to this problem
is likely to work. It might be possible to run a coarse low resolution
ICP and then break up the space-time mesh into smaller pieces with
higher sampling densities of both vertices and deformation nodes.
Another implication of the coarse sampling is that small scale de-
tails of the source animation tend to be preserved in the interpolated
result. The animator has a choice of designating either animation as
the source (please the crown splash video for an example of this).

We should also note that our method can still run into the problem
of local minima that is associated with non-rigid ICP. However, this
has not been problematic in our tests as undesirable results can be
prevented with correspondences provided by the user.

Finally, our surface extraction algorithm produces meshes that can
change their triangulation fairly often. This may sometimes result
in flickering especially at lower resolutions and can be ameliorated
by a pass of temporal smoothing.

11 Conclusion

This paper introduces a flexible new method for the generation and
control of liquid animations. We can instantly generate new fluid
animations on the fly by simply interpolating between existing sim-
ulations, and we can plausibly fine-tune a simulation by warping its
space-time representation. In the future, we envision a fully auto-
mated version of our system that generates an infinite set of simula-
tions from a given range of input parameters. We believe a system
like this would make a significant impact on the state-of-the-art in
special effects production, and it could easily generalize to other
phenomena beyond liquids.

12 Acknowledgements

This work was funded by NSF grant IIS-1130934. We thank Hao Li
for the useful discussions about non-rigid ICP, Mark Luffel for his
help with the hole-filling algorithm and David Hahn for the volume
preserving edge collapse code. We are grateful to our anonymous
reviewers for their suggestions and feedback.

References

AMBERG, B., ROMDHANI, S., AND VETTER, T. 2007. Optimal
step nonrigid ICP algorithms for surface registration. In IEEE
Conf. Computer Vision and Pattern Recognition, CVPR ’07, 1–
8.

AUTODESK, 2013. Maya software.

BESL, P. J., AND MCKAY, N. D. 1992. A method for registration
of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 2
(Feb.), 239–256.

BOJSEN-HANSEN, M., LI, H., AND WOJTAN, C. 2012. Track-
ing surfaces with evolving topology. ACM Trans. Graph. 31, 4
(July), 53:1–53:10.

BREEN, D. E., AND WHITAKER, R. T. 2001. A level-set approach
for the metamorphosis of solid models. IEEE Trans. Visualiza-
tion and Computer Graphics 7, 2 (Apr.), 173–192.



Figure 8: Snapshots from nine different animations that were created by varying the wall width and wall height of a dam break. Each image
is from the same point in time. All results were created by our fluid blending method, and only four original animations were used as input.

BROCHU, T., BATTY, C., AND BRIDSON, R. 2010. Matching fluid
simulation elements to surface geometry and topology. ACM
Trans. Graph. 29, 4 (July), 47:1–47:9.

BROWN, B., AND RUSINKIEWICZ, S. 2007. Global non-rigid
alignment of 3-D scans. ACM Trans. Graph. 26, 3 (Aug.).

COHEN-OR, D., SOLOMOVIC, A., AND LEVIN, D. 1998. Three-
dimensional distance field metamorphosis. ACM Trans. Graph.
17, 2 (Apr.), 116–141.

ENRIGHT, D., NGUYEN, D., GIBOU, F., AND FEDKIW, R. 2003.
Using the Particle Level Set Method and a Second Order Accu-
rate Pressure Boundary Condition for Free-Surface Flows. Proc.
Joint Fluids Engineering Conference.

FOSTER, N., AND METAXAS, D. 1996. Realistic animation of
liquids. Graph. Models Image Process. 58, 5 (Sept.), 471–483.

GELFAND, N., IKEMOTO, L., RUSINKIEWICZ, S., AND LEVOY,
M. 2003. Geometrically stable sampling for the ICP algorithm.
In Int. Conference on 3D Digital Imaging and Modeling (3DIM).

GELFAND, N., MITRA, N. J., GUIBAS, L. J., AND POTTMANN,
H. 2005. Robust global registration. In Symposium on Geometry
Processing, Eurographics Association, SGP ’05.

HÄHNEL, D., THRUN, S., AND BURGARD, W. 2003. An ex-
tension of the ICP algorithm for modeling nonrigid objects with
mobile robots. In Proc. of the Int. Joint Conference on Artificial
Intelligence, IJCAI.

KLEIN, A. W., SLOAN, P.-P. J., FINKELSTEIN, A., AND COHEN,
M. F. 2002. Stylized video cubes. In ACM SIGGRAPH Sympo-
sium on Computer Animation, 15–22.

KWATRA, V., AND ROSSIGNAC, J. 2002. Space-time surface sim-
plification and edgebreaker compression for 2d cel animations.
Int. Journal of Shape Modeling 8, 2, 119–137.

LI, H., ADAMS, B., GUIBAS, L. J., AND PAULY, M. 2009. Robust
single-view geometry and motion reconstruction. ACM Trans.
Graph. 28, 5 (Dec.), 175:1–175:10.

LI, H., LUO, L., VLASIC, D., PEERS, P., POPOVIĆ, J., PAULY,
M., AND RUSINKIEWICZ, S. 2012. Temporally coherent com-
pletion of dynamic shapes. ACM Trans. Graph. 31, 1 (Feb.),
2:1–2:11.

MCNAMARA, A., TREUILLE, A., POPOVIĆ, Z., AND STAM, J.
2004. Fluid control using the adjoint method. ACM Trans.
Graph. 23 (August), 449–456.

MISZTAL, M. K., ERLEBEN, K., BARGTEIL, A., FURSUND, J.,
CHRISTENSEN, B. B., BÆRENTZEN, J. A., AND BRIDSON,
R. 2012. Multiphase flow of immiscible fluids on unstructured
moving meshes. In Proc. Symposium on Computer Animation,
Eurographics Association, SCA ’12, 97–106.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In Proc.
Symposium on Computer Animation, Eurographics Association,
154–159.

NIELSEN, M. B., AND BRIDSON, R. 2011. Guide shapes for high
resolution naturalistic liquid simulation. ACM, New York, NY,
USA, vol. 30, 83:1–83:8.

OSHER, S., AND FEDKIW, R. 2002. Level set methods and dy-
namic implicit surfaces. Springer Verlag.

PAN, Z., HUANG, J., TONG, Y., ZHENG, C., AND BAO, H. 2013.
Interactive localized liquid motion editing. ACM Trans. Graph.
(Proc. SIGGRAPH Asia) 32, 6 (Nov.).

PAPAZOV, C., AND BURSCHKA, D. 2011. Deformable 3d shape
registration based on local similarity transforms. Computer
Graphics Forum 30, 5, 1493–1502.



RAVEENDRAN, K., THUEREY, N., WOJTAN, C., AND TURK, G.
2012. Controlling liquids using meshes. In Proce. Symposium
on Computer Animation, Eurographics Association, SCA ’12,
255–264.

RUSINKIEWICZ, S., AND LEVOY, M. 2001. Efficient variants of
the icp algorithm. In Proc. 3D Digital Imaging and Modeling,
145–152.

SCHMID, J., SUMNER, R. W., BOWLES, H., AND GROSS, M.
2010. Programmable motion effects. ACM Trans. Graph. 29, 4
(July), 57:1–57:9.

SHI, L., AND YU, Y. 2005. Taming liquids for rapidly changing
targets. In Symposium on Computer animation, ACM, SCA ’05,
229–236.

SOLENTHALER, B., AND PAJAROLA, R. 2009. Predictive-
corrective incompressible sph. ACM Trans. Graph. 28, 3 (July),
40:1–40:6.

STAM, J. 1999. Stable fluids. In Proc. SIGGRAPH, ACM, 121–
128.

SUMNER, R. W., SCHMID, J., AND PAULY, M. 2007. Embedded
deformation for shape manipulation. In ACM SIGGRAPH 2007
Papers, ACM, New York, NY, USA, SIGGRAPH ’07.

SZELISKI, R. 1996. Matching 3-d anatomical surfaces with non-
rigid deformations using octree-splines. Int. Journal of Com-
puter Vision 18, 171–186.

TAUBIN, G. 1995. A signal processing approach to fair surface
design. In Proceedings of SIGGRAPH 95, Annual Conference
Series, 351–358.

TEVS, A., BERNER, A., WAND, M., IHRKE, I., BOKELOH, M.,
KERBER, J., AND SEIDEL, H.-P. 2012. Animation cartography-
intrinsic reconstruction of shape and motion. ACM Transactions
on Graphics (TOG) 31, 2, 12.

THUEREY, N., KEISER, R., RUEDE, U., AND PAULY, M. 2006.
Detail-Preserving Fluid Control. Symposium on Computer Ani-
mation (Jun), 7–12.

TURK, G., AND O’BRIEN, J. F. 1999. Shape transformation us-
ing variational implicit functions. In Proceedings of the 26th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, SIGGRAPH ’99, 335–342.

WOJTAN, C., THÜREY, N., GROSS, M., AND TURK, G. 2010.
Physics-inspired topology changes for thin fluid features. ACM
Trans. Graph. 29 (July), 50:1–50:8.

YU, J., AND TURK, G. 2010. Reconstructing surfaces of particle-
based fluids using anisotropic kernels. In Proceedings of the
2010 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, Eurographics Association, 217–225.

ZENG, Y., WANG, C., WANG, Y., GU, X., SAMARAS, D., AND
PARAGIOS, N. 2010. Dense non-rigid surface registration using
high-order graph matching. In IEEE Conf. Computer Vision and
Pattern Recognition, CVPR 2010, 382–389.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid.
ACM Trans. Graph. 24, 3 (July), 965–972.

13 Appendix

This section describes the details for creating a tetrahedralization
of the space-time mesh. Recall that each triangle from one frame

Type 1 Prism Type 2 Prism

Figure 9: The two types of triangular prisms, based on the orien-
tation of the diagonals that split their quadrilateral faces. Type 1
prisms (top left) can be divided into three tetrahedra, but Type 2
prisms (top right) require eight. The two triangles (bottom) show
the directed edge labels that correspond to the two types of prisms.

has a matching triangle in the next frame, and that connecting these
triangles with edges creates a triangular prism. In order to tetrahe-
dralize these prisms, we require that adjacent prisms use the same
diagonal edge to split their shared quadrilateral face. That is, the
diagonal assignments must be consistent between adjacent prisms.
There are two distinct ways to assign diagonals to a single prism.
The Type 1 prism can easily be split into just three tetrahedra (see
Figure 9, upper left). Unfortunately, the best dissection of the Type
2 prism (Figure 9, upper right) that we have found leads to eight
tetrahedra. We form these eight tetrahedra by introducing a new
vertex at the center of the prism, and then creating one tetrahedron
per triangular face by connecting it to the new center vertex. Since
we want to avoid creating more tetrahedra than necessary, we de-
sire an assignment of diagonals to the prisms that includes as many
Type 1 prisms as possible, and few or no Type 2 prisms.

We have devised a simple algorithm that creates a consistent as-
signment of diagonal edges across all of the prisms, and that also
creates only Type 1 prisms. To do this, we only have to consider the
triangle mesh from one of the two frames that are to be connected
by prisms. We will label each of the edges of this triangle mesh
with a directed edge. Each of these directed edges indicates the
orientation of a diagonal for the corresponding prism quadrilateral
face. Specifically, a directed edge that points towards a particular
vertex v indicates that the diagonal edge for that quadrilateral has v
as one of its vertices. A triangle that is labeled with edges that are
all oriented either clockwise or counter-clockwise (Figure 9, lower
right) indicates a Type 2 prism, which is to be avoided. A triangle
with mixed orientations indicates a Type 1 prism (Figure 9, lower
left), which is desired. Our diagonal assignment algorithm operates
purely on the directed edges of the triangle mesh.

To generate the edge directions for a given triangle mesh, we start
by assigning a unique numerical label to each vertex of the mesh.
Then, each edge of the mesh is assigned the direction that points
from the vertex with the lower value towards the vertex with the
higher value. This simple rule gives a direction to each edge in the
mesh. Note that for any triangle, one of its vertices always has the
highest numeric label among the three vertices. This means that
two of the directed edges will point towards this vertex, indicating
a Type 1 prism (Figure 9, lower left). Since it is not possible for
the three vertex indices to form a closed cycle of numeric labels
(e.g. v1 < v2 < v3 < v1), a Type 2 configuration (Figure 9, lower
right) is impossible. Since we globally assign the numerical vertex
labels, adjacent triangles share the same understanding about the
direction of their shared edge. This means our diagonal assignment
is consistent between adjacent prisms.


